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ON THE CONVERSE LAGRANGE THEOREM IN MAGNETOHYDRODYNAMICS* 

YU.G. GUBAREV 

The problem of the converse Lagrange theorem /l, 2/ in 
magnetohydrodynamics is investigated. The linear problem of the 
stability of the quiescent state of a viscous incompressible fluid with 
an infinite conductivity containing a magnetic field is considered. it 
is shown by the direct Lyapunov method that the system is unstable if 
the second variation of the potential energy takes negative values. "A 
priori" lower and upper estimates of the increase in the perturbations 
are obtained. The lower estimate ensures an exponential increase in 
the displacements of the fluid particles and the lines of force of the 
magnetic field from the equilibrium state. The upper estimate shows 
that the solutions do not increase more rapidly than exponentially. In 
both cases, the exponents are calculated using the equilibrium state 
parameters and the initial data for the perturbation fields. 

This paper extends the well-known results in /3, 41 to magneto- 
hydrodynamics. 

I. Formulation of the eaxct problem. The spatial motions of,a viscous, incompressible 
fluid with an infinite conductivity in a magnetic field are studied. The domain z of the 
flow is bounded by a fixed, solid, ideally conducting boundary dt. The following notation is 
employed: p and n = (a,, uS,n3) are the pressure and velocity fields, 11 = (h,, h,, h,) is the 
magnetic field, x = (q, x2, x3) and t are Cartesian coordinates and the time, n = (nl, ntr n3) 
is the normal to d%, p is the density of the fluid and n is the coefficient of dynamic 
viscosity. The equations of motion are taken in the form /5/ 

The conditions 

are satisfied on the boundary dt. 
Everywhere, summation is carried out over repeated vector and tensor indices. 
The energy dissipation equation 

(1.2) 

holds for problem (1.1) and (1.2). 
The integration is carried out everywhere over the domain 'c of the flow and a partial 

derivative with respect to time is indicated by a dot. 
The exact stationary solutions of problem (l.l), (1.2) 

u -= U (x) s 0, p = P (x), h = II (x) (1.4) 

which correspond to states of magnetostatic equilibrium, satisfy the equations 

(in)-' Hk (H,, , - lf,,,;) = -P,i, HR,V -= 0 (P, ‘ = dlJ/d.q) (1.5) 

and the boundary conditions (1.2). 

2. Form&&ion of the Linearized probtem. The linearization of problem (l.l), (1.2) on 
the solutions (1.41, taking account of (1.51, yields 
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put” = (Jik, k’ + (4x)-‘[h,’ (Hi,k - Hh_, i) + Hx (h&k - hk, i’)l (2.1) 
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hi ,. = Hkui,k’ - Uk’Hi,k, u;,~=O, Pz;,~=O in T 

ui’ = 0, hi’n, = 0 on at 

Here, u', p’ and h' are the perturbations, the velocity and pressure fields and the 
magnetic field. The expression for uik' is identical with that for oik when p and u are 

replaced by p’ and u'. 
A field of Lagrangian displacements of the fluid particles g (x9 t) is introduced which 

satisfies the equation 
&'.= Ui' (2.2) 

The primes on the perturbation fields and on the tensors oik' and Dik’ are omitted below. 
In the case of the linearized problem (2.1). the energy dissipation equation has the 

form 

E' = -D; E = K + n, D = ‘i, jqDirDikd-c 

K = ‘/,~puiu,dr, II = (&c)-’ 5 [hihi - hi& (H,,i - HiJ] d7 
(2.3) 

The functional n (2.3) is identical to the expression for the second variation of the 
potential energy functional of problem (l.l), (1.2) /6/ since it is the first non-zero term 
in the expansion of n, (1.3) close to the state of magnetostatic equilibrium (the quiescent 
state) (l-4), (1.5) and (1.2). 

We will show that the quiescent state (1.4), (1.5), (1.2) is unstable when there is no 
minimum of the potential energy functional n (2.3) and obtain estimates of the rate of increase 
in the perturbations. 

It is assumed that a set of functions j(s) from (2.2) exists for which 

n < 0, g (x) FZ Q (2.4) 

In the case when g(x)*Q, the inequality (2.4) changes into the opposite inequality. 
Consequently, in the case of the functional II, the quiescent state (1.4), (1.5) and (1.2) 
is an infinite dimensional analogue of a "saddle point". 

3. The Lyapw?o~ functional. The functionals /4/ 

(3.1) 

are introduced. 
Differentiation of the functional X with respect to time and subsequent reduction using 

(2.1), (2.3) and (3.1) yield the relationship 

X' = 4 (K - II) = 8K - 4E (3.2) 

which is called the generalized virial equation /4/. By multiplying relationship (3.2) by an 
arbitrary constant factor, --h, and adding it to the energy dissipation Eq.(2.3), it is possible 
to obtain the relationship 

(3.3) 

Let h>O. Then, since the quantities Kh and D), 
EL 
. . 

s 2hEi 
are non-negative, the inequality 

follows from (3.3) and, on integrating this expression, we get 

EF, (t) Q E&O exp (2W (EF.” = EL (0)) (3.4) 

which holds for any solution of problem (2.1). It is important that no constraints whatsoever 
should be imposed on the sign of the potential energy functional II (2.3) here. Since the 
functional EL varies monotonically, it may be treated as a Lyapunov functional. 

4. The l.ouer estimate. Let condition (2.4) be satisfied. This enables us to select the 
initial fields of the Lagrangian displacements g(x.0)~ Q such that no< 0. The functions 
u (x7 O), for which K”< In”l, are considered as the initial velocity fields. 

The inequality 

E” < 0 (4.1). 
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follows from the last two relationships. 
By (3.3) 

EL0 = E" -+ LA” + PM”. 2A G -- Al’ t i 2) 

The functional&' is a second degree polynomial in h with a positive coefficient -II" 
(3.1) accompanying h2 and a negative free term B" (4.1). 

Let h>O. Then, in the interval, 

0 < h < A, = --‘&AIM + Ve(l;,AiM)” - E/M (4 3) 

the relationship 

Eh'<O (4.4) 
is satisfied. 

The inequalities (3.4) and (4.4) show that the solutions of problem (2.1) increase ex- 
ponentially with time. 

If h=A,-s (for any 6 from the interval O< 6< ii,), relationship (3.4) takes the 
form 

The inequality 

(4.5) 

follows from the definition of the functionals II, and Kn. This inequality, together with 
(4.5), yields the estimate 

11 (t) < &-a exp [2 (A, - 6) tl (4.6) 

Using the functional 

J (t) -= f Ih+hi + SjEJ 0% 

the inequality (4.6) is written in the more convenient form 

J (8) > / d&J exp I2 (4 - 6) tl 

where c is a known constant. 

('l.i] 

It follows from (4.7) that the parameter A, (4.3) gives a lower estimate of the increments 
of the solution of problem (2.1). 

The class of solutions of problem (2.1) is considered for which the initial velocity 
fields u (x, 0) and the Lagrangian displacements 5(x,(l) are associated at each point by the 
relationships 

u (w, 0) := hE (X? 0) (4.8) 

It follows from relations (3.3) and (4.8) that 

K>,O zzz (+I EQ -= Il," (!t.'j) 

Let h>O and let condition (2.4) be satisfied in the case of the Lagrangian displace- 
ment fields 's (x, 0). Since, by (3.31, 

XI,." = Xl0 + hG" + VW 

the inequality I&O< I? holds in the interval 

(j < h < A = --‘f,GiM + If (‘12GIM)” - 2WM (4.10) 

By putting I?. = A - 6 (with an arbitrary 6 from the interval 0< 6< A) and taking account 
of relationship (4.9), inequality (3.4) can be written in the form 

D 
E&A (6) < &-A exp f2 (A - 6) $1 

and the estimate 
0 

J(t) > 1 cn*_a ) exp[2 (A - 6) t1 (4.11) 

follows from this. 
Hence, the parameter A gives a lower estimate of the increments in the solutions of 

problem (2.1) from the class (4.8). 
It will be shown below that the perturbations (4.8) are the most critical, since the most 

rapid growth in the solutions of problem (2.1) is observed when 

A+ = SUp&Qik (4.12) 

5. l’he upper estinrate. Let h> A' 14.12). Then, the inequality 

& > 0 (5.1) 

holds for the Lagrangian displacement fields f(x)EQ. By virtue of (2.41, relationship 
(5.1) is all the more satisfied in the case of the functions g(x) SC?. Hence, the functional 
II, is positive-definite for all possible Lagrangian displacement fields E(X). Rglations 
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!2.2), (3.3) and (5.1) show that the functional El is also positive-definite for all possible 
Lagrangian displacement fields t(x) and velocity fields u(x). 

Consequently, the estimate 

.!?~t+~ (t) Q En++e exp 12 (A' + 8) tl 

follows from (3.4) when h = A+ + E (e> 0) which, by using the inequality II,+(t)>O, is 
transformed to the more obvious form 

3&++,(t) + E (2A+ + c)M(t) + &G-S 2En++e exp [2 (A' i E) tl (5.2) 

It is seen from (5.2) that the parameter A+ + E gives an upper estimate of the in- 
crements in the solutions of problem (2.1). A comparison of estimates (4.11) and (5.2), 
taking account of (4.12), shows that the parameter A+ gives both an upper and lower estimate 
of the rate of growth in the most critical perturbations (4.8): 

A+ - 6 <W* < A+ + E 

The author thanks V.A. Vladimirov for suggesting the problem and for useful discussions. 
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THE CONSTRUCTION OF RECIPROCITY AND INTEGRAL REPRESENTATION FORMULAS 

OF THE GENERAL SOLUTION FOR QUASISTATIC AND DYNAMIC PROBLEMS 

OF UNCOUPLED GENERALIZED THERMOELASTICITY' 

YU.M. MAMEDOV 

Reciprocity formulas are constructed and representations of the 
Somigliani-type are obtained for quasistatic and dynamic problems of 
uncoupled generalized thermoelasticity in the Lord-Shulman formulation 
that is effective for applications. Moreover, representations are 
obtained for the stresses and heat flux. Unlike the existing approach 
(/l/, say) these formulas are derived on the basis of an examination of 
the system of differential equations of the above-mentioned problems of 
generalized thennoelasticity as a system with appropriate 
non-selfadjoint differential operators. Operators adjoint to the initial 
differential operators are introduced into consideration for the 
construction of the reciprocity formulas (second Green's formula), and a 
Laplace transformation is used. 
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